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Coherent states for angular momentum 
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Abstract. Angular momentum states analogous to the coherent states of the harmonic 
oscillator are defined and their properties discussed. 

1. Introduction 

The coherent state was first constructed (Schrodinger 1926, Glauber 1963) for the simple 
harmonic oscillator. The Hamiltonian of the system 

(1) H = p2i2m + mw2x2/2, 

may be rewritten as 

H = htu(ata+i), 

by defining annihilation and creation operators 

a = (p-int~x)/(2mwh)”~, at = ( p +  im~x) / (2muh)”~.  (3) 
The eigenstates of the Hamiltonian, In), belonging to the energy eigenvalue 

E,, = ho(n+j ) ,  

where n is a non-negative integer, may then be obtained with the properties 

ataln) = nln), a f ( n )  = ( n i -  1)’#* In+ l ) ,  aln) = n1’2(n- 1). (4) 

The coherent state may then be constructed out of these states, namely 

where c1 is a complex number, and the factor outside the summation sign is the normaliza- 
tion constant. The coherent state la) is an eigenstate of the annihilation operator, 
namely, 

ala) = ula). (6) 

I x )  = exp( - z*a + za+)lO). (7) 
and is thus a ‘displacement of the vacuum’. The coherent states form a complete (albeit 

The coherent state may also be written in the form 

1868 



Coherent states for  angular momentum 1869 

an over-complete) set in the sense that 

where the integration is over the entire complex s( plane. The coherent state constitutes 
a state of minimum uncertainty, namely, 

ApAx = hJ2. (9) 

Also the coherent state, a non-stationary state, develops with time (taking cr(t = 0) = 
/I e-") yielding 

Identifying the constant in square brackets with the amplitude (in the limit h -+ 0. 
2 -+ .3c1 : E ,  J h  -+ finite limit), the expectation value of the displacement in the coherent 
state behaves like the displacement of a classical oscillator. In this sense the coherent 
state is called a 'classical state'. 

The object of the present work is to show that coherent states may be constructed 
for an angular momentum system and the points of similarity and dissimilarity with 
the properties of the oscillator coherent states, discussed above, will be indicated. 

2. The extension of the rotation group 

The discussion of angular momentum in quantum mechanics, usually, begins with the 
commutator relations for the generators of the rotation group, the components of the 
angular momentum operator, 

[ J p ,  J41 = icpqr, J r  (1 1) 

and the definition of the basis states I j ,  m )  which are the simultaneous eigenstaIes of J 2  
and J3 belonging to the eigenvalues j ( j +  1 )  and m respectively. Of special interest are 
the operators J ,  = J,iiJ, of which the lowering operator J -  is such that 

J-ij, m )  = [ ( j + m ) ( j - m +  l)]1/2ij, m -  1). (12) 

It might appear that the role of J -  is analogous to that of the annihilation operator a 
for the oscillator. However, there is an important difference that for a givenj the value 
of m lies in the restricted range - j  d m d +j.  This of course reflects the fact that the 
rotation group is compact. Thus it is not possible to find states which are eigenstates 
of J -  (in analogy with equation (6)).  In order to build states with analogous properties, 
it will be necessary to introduce a group, containing the rotation group as a subgroup, 
which has generators which can also change the value of j .  To achieve this, following 
Schwinger (1965), we introduce boson operators a, ( r  = +, - )  such that 

[a,, a,] = 0 = [a;, a:] and [a,, 4 1  = sw (13) 

J ,  = af,a-,  J -  = U ~ U ,  and J3 = ;(at+.+ - a h - ) ,  (14) 

The bilinear forms 
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satisfy, by virtue of the commutation relations (13), the Lie algebra of the rotation group. 
We may go on to consider other bilinear forms, 

(1 5 )  K +  = a \ a t ,  K -  = a,a- and , - 2 ( a + a +  + a - a -  -t l), 

which can be seen to satisfy the commutation relations 

[ K 3 .  K+1 = f K ,  and [ K + .  K - ]  = - 2 K 3 .  (16) 

K - 1  ' t 

Recognizing that the angular momentum states may be built out of the 'vacuum' by 
the operation of these boson creation operators, namely, 

(0; ) j  + "(a: )' - " 
[( j 4- m)  ! ( j  - m) ! ] 1 / 2  

i j , m )  = 10). 

it may be seen that (in a manner analogous to equation (12) )  

K - l j , m )  = [ ( j -m) ( j+m)]1 ,21 j -  1 ,m) .  (18) 
In a similar manner one may introduce sets of operators : I + = aLa:, I - = a+a+ and 
I, = 2a;a+;  L+ = a t a t ,  L -  = a - a -  and L ,  = 2 a y a -  which satisfy commutation 
relations, mutatis mutandis, analogous to equation (16). It may be observed that out 
of J 3 ,  K,, I, and L ,  only two are linearly independent, and thus out of the generators 
J, K ,  I and L there are ten independent generators. The action of these generators on 
the angular momentum states is depicted in figure 1. Thus, for instance, 

I - l j , m )  = [ ( j + m ) ( j + m - l ) j l  ' I j - 1 . m - I ) .  (19) 

. .  . .  

I 
--. 
m 

Figure 1. Action of the generators on  the angular momentum states 

3. Construction of angular momentum coherent states 

Observing that the lowering operators I -  and K -  commute with each other and seizing 
upon the property of Glauber coherent states being eigenstates of the annihilation 
operator (see equation (6)), we introduce angular momentum coherent states as 
simultaneous eigenstates of I -  and K -, namely, 

I- IP, r> = PIP, Y), 
K-IP7-Y) = 1/IPIY>, (206)  
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where and 7 are complex numbers. Writing 
-I + i 

imposing conditions (20) and using equations (1 8) and ( 1  9), we obtain recurrence 
relations for the coefficients elm, which yield finally 

where ( = ( l f l I z  + l;~[2)/lPl, and the factor outside the summation sign is the normalization 
constant . 

It is instructive to generate these coherent states in a somewhat different manner. 
In analogy to construction (7) consider states (Radcliffe 1971) 

(23) 

where N is a normalization constant. Such coherent states have been considered by 
a number of authors (Haken 1970, Haake 1973, Arecchi er a1 1972). These so called 
Bloch or atomic coherent states, however, pertain to a given value of j  in contradistinction 
to the states considered here. Next, superpose states Icr;j>, 

1a;j) = Ne”’-(j ,m = - j>,  i.j,m = j )  

such that the resultant state is an eigenstate of I -  belonging to the eigenvalue P, to 
obtain 

It is readily seen that the state defined by equation (25) is identical to the state defined 
by equation (22) provided we make the identification 7 = ap. 

4. Properties of the angular momentum coherent states 

It is readily verified that the states 1cr:P) defined by equation (25), form a complete 
set of states in the sense that 

where the integrals cover the entire complex cr and j? planes. 
In order to discuss the physical significance of the parameters a and f l ,  it is appropriate 

to calculate the expectation values of various physical quantities in these states. Thus, 
for instance, we have 
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Introducing the parametrization 

r = el+ tan(d/2), (280) 

P = el*lPI, (286) 

h + O , ( + c r _ :  +he -+ f .  (29) 

(J ,> -+ 2 sin 8 cos 4, (30u) 

( J y )  -+ f sin 0 sin 4, (30b) 

where 0, 4 and $ are real parameters and passing to the classical limit 

i t  is readily verified that. 

Thus the physical significance of the parameters 0 and 4 resides in the co-latitude and 
longitude of the expectation value of the angular momentum J while the magnitude of 
P is related to the classical limit of the length of its expectation value. It remains to 
elucidate the significance of the parameter $. For this purpose consider the classical 
limits of the expectation value of a unit vector i in this state, 

( LY, j?l?,lr, f l )  --t - [cos 4 cos 8 cos($ + 4) + sin 4 sin($ + 4)], 
(r, fllFB1x, P )  -+ -[sin 4 cos 8 C O S ( $ + ~ ) - C O S  4 sin($+4)], 

( r .  fllFzlr, P )  --f sin H cos($ + 4). 

(31a) 

(31h) 

(31c) 

Thus the angle IC/ is related to the nodal angle between the space-fixed and body-fixed 
(with the third axis along #) coordinate systems or equivalently the azimuth of i in 
the invariant plane (the plane perpendicular to #). To sharpen the significance of 
these parameters further it is useful to assign the angular momentum to some physical 
system and consider the time dependence of various expectation values. Thus, assigning 
to the angular momentum state a particle of magnetic moment g A  and placing the 
system in an external magnetic field B (say in the 2 direction) then each component state 
1, m )  develops with time according to the factor exp( - igmBt) which would change the 
coherent state with time in the manner 

2 -+ 2 e-lg*t3 (32a)  
P -+ f l  e + ' g B r ,  (32b) 

which is precisely what one would expect, namely, the azimuth angle 4 for $ changes 
with time with the Larmor angular frequency gB. Again it is illuminating to associate 
the angular momentum with that of a symmetric rigid rotator in which case the energy 
of the state I j ,  m )  is given by 

(33) 

where .Y is the moment of inertia parameter. In this case, in the classical limit (equation 
(29)) we have 
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where o = $/.a. Thus it is clear from our discussion that the state we have constructed 
is ‘classical’ in the sense that the Glauber state was (equation (10)). 

Another important question is the uncertainty relations in the states. From the 
commutation relations for angular momentum components we may deduce the un- 
certainty relation 

with analogous inequalities for the components of I and L.  Taking expectation values 
in the coherent state (equation (22)) it is easily verified that 

(37a)  

(37b) 

(37c)  

( 3 7 4  

where the first two terms in the last two equations express the quantum correlations 
present. Thus it is clear that 

( 3 8 )  

( K , )  = Re(K+) = hRey* = ;(hsinHcos($+$), 

< K 2 )  = -+@I sin 0 sin(q5 + 4). 
( K : )  = ah2 + i < h 2  tanh 4 + a S 2 h 2  sin2@ cos2(q5 + $). 

( K : )  = $ h 2 + $ < h 2  tanh < + $ t 2 h 2  sin2Qsin2(q5+$), 

A K ,  A K ,  = $i2+a<h2 tanh 5. 
Comparing with the result 

( K 3 )  = ih+$<h tanh 5. 
we find that in the coherent state being considered 

A K ,  A K 2  = 4hl (K3) l .  (39) 

A similar result may be obtained analogously for I , .  I, and I,. Thus the coherent state 
is a state of minimum uncertainty. However. the uncertainty relation for the components 
of 2 is not one of minimum uncertainty and this is not at all surprising since the magnetic 
projections for a given j run over a finite set and the inequality remains. 

5. Conclusion 

Angular momentum states analogous to the coherent states of the harmonic oscillator 
have been constructed, their properties have been studied. It has been shown that these 
states describe well the classical limits and correspond in a sense to minimum uncertainty 
wave packets. The usefulness of these states would perhaps lie in the consideration of 
statistical mechanics of spin systems, in the discussion of collective modes involving 
spins, and in the discussion of quantum correlation effects in near-classical systems. 

Acknowledgments 

We thank Padmanabha Dasgupta, Avinash Vasant Khare and Gautam Ghosh for 
useful discussions. One of us (DB) is thankful to the Council of Scientific and Industrial 
Research. India for financial support. to the Director, Bose Institute for his hospitality 
and to Professor A M Ghosh for his constant encouragement. 



1874 D Bhaumik, T Nag and B Dutta-Roy 

References 

Arecchi F T. Courtens E, Gilmore A and Thomas H 1972 Phys. Rev .  A 6 221 1 
Glauber R J 1963 Phys. Rev 131 2766 
Haake F 1973 Springer Tracts, vol66 (Berlin: Springer) 
Haken H 1970 Enc.yclopediu off'hysics. vol 25/2C (Berlin: Springer) 
Radcliffe J M 1971 J .  Phys.  A: Gen. Phys.  4 313-23 
Schrodinger E 1926 Nururwiss. 14 664 
Schwinger J 1965 Quunrum Theory of Angulur Momentum eds L C Biedenharn and H Van Dam (New York: 

Academic Press) pp 229-79 


